

Syracuse Summer Institute Finale on Weak Decays

Oh, so many decays, and so little time

- ☐ I've shown you one possible weak decay last time.
- ☐ A B⁻ meson has 100's of ways it can decay! Huh, why?
 - ☐ Because it can! (Remember, tenet of Quantum Physics)

```
D^-\pi^+
                                                    (2.68 \pm 0.13) \times 10^{-3}
D^{-}\rho^{+}
                                                    (7.8 \pm 1.3) \times 10^{-3}
   D^{-}K^{0}\pi^{+}
                                                       4.9 \pm 0.9 \times 10^{-4}
                                                    (4.5 \pm 0.7) \times 10^{-4}
D^-K^*(892)^+
                                                       2.8 \pm 0.6 \times 10^{-3}
D^-\omega \pi^+
D^-K^+
                                                       2.0 \pm 0.6 \times 10^{-4}
D^-K^+\overline{K}^0
                                                                       \times 10^{-4} CL=90%
D^{-}K^{+}\overline{K}^{*}(892)^{0}
                                                    (8.8 \pm 1.9) \times 10^{-4}
\overline{D}^0\pi^+\pi^-
                                                    (8.4 \pm 0.9) \times 10^{-4}
                                                    (2.76 \pm 0.13) \times 10^{-3}
   D^*(2010)^-\pi^+
                                                    (8.0 \pm 2.5) \times 10^{-3}
                                                    (3.9 \pm 1.9) \times 10^{-3}
   (D^-\pi^+\pi^+\pi^-) nonresonant
   D^-\pi^+\rho^0
                                                    (1.1 \pm 1.0) \times 10^{-3}
                                                    (6.0 \pm 3.3) \times 10^{-3}
      D^-a_1(1260)^+
D^*(2010)^-\pi^+\pi^0
                                                    (1.5 \pm 0.5)\%
   D^*(2010)^- \rho^+
                                                       6.8 \pm 0.9 \times 10^{-3}
D^*(2010)^-K^+
                                                    (2.14 \pm 0.16) \times 10^{-4}
D^*(2010)^- K^0 \pi^+
                                                    (3.0 \pm 0.8) \times 10^{-4}
   D^*(2010)^-K^*(892)^+
                                                    (3.3 \pm 0.6) \times 10^{-4}
D^*(2010)^{-}K^{+}\overline{K}^{0}
D^*(2010)^-K^+\overline{K}^*(892)^0
                                                    (1.29 \pm 0.33) \times 10^{-3}
D^*(2010)^-\pi^+\pi^+\pi^-
                                                    (7.0 \pm 0.8) \times 10^{-3}
                                                    (0.0 \pm 2.5) \times 10^{-3}
   (D^*(2010)^-\pi^+\pi^+\pi^-) non-
   D^*(2010)^-\pi^+\rho^0
                                                    (5.7 \pm 3.2) \times 10^{-3}
      D^*(2010)^- a_1(1260)^+
                                                     1.30 \pm 0.27)\%
D^*(2010)^-\pi^+\pi^+\pi^-\pi^0
                                                    (1.76 \pm 0.27)\%
D^{*-}3\pi^{+}2\pi^{-}
                                                       4.7 \pm 0.9 \times 10^{-3}
```

This is a small fraction of the decays known for the B⁰ meson (bd)

The number on the right is the fraction of time the B⁰ meson undergoes that decay.

For every one of these decays, one should be able to draw a Feynman diagram to represent it!

Another B meson decay

$$D^+ \rightarrow K^-\pi^+\pi^+$$

Happens ~9% of the time

Weak Decays

Width of arrows give a qualitative feel for the decay rate.

- \square Top: $t \rightarrow b >>> t \rightarrow s$ or $t \rightarrow d$.
- \square Bottom: $b \rightarrow c >> b \rightarrow u$.
- \square Charm: $(c \rightarrow s) \sim 25 \times (c \rightarrow d)$; smaller total decay rate.
- ☐ Strange: s→u dominates in many cases, but not all.. e.g. $K^+ \rightarrow \mu \nu$ dominant (no "u" quark in final state)

Comparison of "Branching Fractions"

"Branching fraction" is just a fancy name that tells how often a particle decays to some particular final state.

New Physics in B decays

- If in the decay of a particle, there is a virtual particle "loop", there is the potential for a new particle to contribute to the decay.
 - \clubsuit Since it's emitted and re-absorbed, it needn't conserve energy, as long as $\Delta E \Delta t^{\sim} \hbar$
 - **Lesson** Example coming on next slide.

- **Key point:** Even though you may not see it directly, it will leave its fingerprints.
 - Deviations from SM expected rates or other observable quantities.

"Penguin" decays

- ♣ Involves a virtual W boson loop suppressed in the SM.
 - ♣ Potential for new, high mass particles to contribute in these kinds of "loop diagrams".
 - Just replace W and top quark with some new physics particles!

Particle-antiparticle mixing

 Oddly enough, the weak interaction allows certain particles to transform into their antiparticles.

- \blacksquare The B \leftarrow \rightarrow B oscillation occurs ~200 billion times per second.
- ♣ Alternately said, the B←→B oscillate back & forth with a period of ~5 pico-seconds.
- ♣ Recall, that the decay time is ~ 1.5 ps.
- ♣ So, about 20% of produced B⁰ mesons will decay as B⁰!
- Involves 2 W bosons suppressed in the SM.
- Involves a "loop" with 2 virtual top quarks and 2 W's.
 - Potential for new, high mass particles to contribute

Neutrino Interactions

- ☐ Here, a neutrino interacts with a d-quark. The neutrino emits a W⁺ and turns into an e-.
- ☐ The d-quark absorbs the W⁺ and turns into a u-quark.

The force carriers and what they couple to

Force	Carrier	Mass	Quarks u c t d s b	Charged Leptons μ	Neutral Leptons v_{μ} v_{τ}
EM	Photon	0	Yes	Yes	No
Strong	Gluon	0	Yes	No	No
Weak	W [±] , Z ⁰	~100X proton mass	Yes	Yes	Yes
					10