Quarknet Syracuse Summer Institute Strong Forces, finale ## Last time – Key points - ☐ Feynman diagrams: pictorial representation of interaction between fundamental particles and force carriers. - ☐ Both "scattering" and decays - ☐ Energy and momentum conservation applies at each "vertex" - ☐ The mass of an object is a measure of it's "self-energy". - \Box Strong & EM force can only add or remove $q\overline{q}$ pairs, they CANNOT change the quark not the lepton type. #### **Example of strong decay** - The ρ^+ meson is an excite state of a (ud). - How does it decay? - ☐ Strong decay. - ☐ Note the gluon produces a qq pair. - ☐ The original quarks are still there! - □ Could also get $g \rightarrow dd$, which would still yield $\pi^+\pi^0$. ☐ Could also get $g \rightarrow d\overline{d}$, which would then yield K^0 and K^0 . #### **Another strong decay** - The Y(4S) is the bound state of a $(b\bar{b})$ - The "4S" is the same spectroscopic notation as in "4s" in H-atom! - That is, principal quantum number $n = 4 \& \ell = 0$ for the bb system The Y(4S) has been the "work-horse" for studying B meson decays over the last 20 years! What if the $g \rightarrow u \bar{u}$? #### The bb atoms! To get these data, CLEO collided e⁻ and e⁺, varying the beam energy from 4.725 GeV to 5.81 GeV. Simply count the #events that produce hadrons. - \Box The peaks correspond to the production of \overline{bb} resonances. - \square Only the Y(4S) has mass > 2xM_B, allowing it to decay into BB [M_B = 5279 MeV] - ☐ The Y(1S) Y(3S) cannot decay to \overline{BB} ; they decay in other ways to hadrons, or even leptons. - How do the splitting here compare to the H-atom? Why? - ☐ Any idea what's the "stuff" under the peaks? #### Electromagnetic decay • The J/ ψ meson is a (c \bar{c}) - This is an example of an electromagnetic decay. - The original c \bar{c} quarks have annihilated into pure energy (a photon), which then transformed back into mass (pair of leptons). - \bot This J/ ψ decay occurs about 6% of the time. #### Back to the "simple" proton - ☐ For a high school student, knowing it's made of 3 quarks (uud) is probably sufficient. - ☐ But, so you're aware ... it's much more complicated! - ☐ The quarks are continually interacting by exchanging gluons. - ☐ The gluons can split into quark-antiquark pairs. - ☐ These qq̄ pairs are "virtual"... they pop in & out of existence. ### So, at the Large Hadron Collider we're doing In the collisions, we are not looking at a whole proton scattering off another whole proton. Rather we are really looking at quarks and gluons interacting with each other. 8