

Quarknet Syracuse Summer Institute Strong Forces, finale

Last time – Key points

- ☐ Feynman diagrams: pictorial representation of interaction between fundamental particles and force carriers.
 - ☐ Both "scattering" and decays
- ☐ Energy and momentum conservation applies at each "vertex"
- ☐ The mass of an object is a measure of it's "self-energy".
- \Box Strong & EM force can only add or remove $q\overline{q}$ pairs, they CANNOT change the quark not the lepton type.

Example of strong decay

- The ρ^+ meson is an excite state of a (ud).
- How does it decay?

- ☐ Strong decay.
- ☐ Note the gluon produces a qq pair.
- ☐ The original quarks are still there!
- □ Could also get $g \rightarrow dd$, which would still yield $\pi^+\pi^0$.

☐ Could also get $g \rightarrow d\overline{d}$, which would then yield K^0 and K^0 .

Another strong decay

- The Y(4S) is the bound state of a $(b\bar{b})$
- The "4S" is the same spectroscopic notation as in "4s" in H-atom!
 - That is, principal quantum number $n = 4 \& \ell = 0$ for the bb system

The Y(4S) has been the "work-horse" for studying B meson decays over the last 20 years! What if the $g \rightarrow u \bar{u}$?

The bb atoms!

To get these data, CLEO collided e⁻ and e⁺, varying the beam energy from 4.725 GeV to 5.81 GeV. Simply count the #events that produce hadrons.

- \Box The peaks correspond to the production of \overline{bb} resonances.
- \square Only the Y(4S) has mass > 2xM_B, allowing it to decay into BB [M_B = 5279 MeV]
- ☐ The Y(1S) Y(3S) cannot decay to \overline{BB} ; they decay in other ways to hadrons, or even leptons.
- How do the splitting here compare to the H-atom? Why?
- ☐ Any idea what's the "stuff" under the peaks?

Electromagnetic decay

• The J/ ψ meson is a (c \bar{c})

- This is an example of an electromagnetic decay.
- The original c \bar{c} quarks have annihilated into pure energy (a photon), which then transformed back into mass (pair of leptons).
- \bot This J/ ψ decay occurs about 6% of the time.

Back to the "simple" proton

- ☐ For a high school student, knowing it's made of 3 quarks (uud) is probably sufficient.
- ☐ But, so you're aware ... it's much more complicated!
- ☐ The quarks are continually interacting by exchanging gluons.
- ☐ The gluons can split into quark-antiquark pairs.
 - ☐ These qq̄ pairs are "virtual"... they pop in & out of existence.

So, at the Large Hadron Collider we're doing

In the collisions, we are not looking at a whole proton scattering off another whole proton.

Rather we are really looking at quarks and gluons interacting with each other. 8